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In this paper, an active control scheme for an axially moving string system that

suppresses both longitudinal and transverse vibrations and regulates the transport

velocity of the string to track a desired moving velocity profile is investigated.

The control scheme utilizes three inputs: one control force at the right boundary, which

applied at the left and right rollers. The equations of motion are derived by using

Hamilton’s principle. Two nonlinear partial differential equations govern the long-

itudinal and transverse motions, where the variation of the tension of the string due

to the transverse and longitudinal vibrations is considered. Among four boundary

conditions, two describe the rotational dynamics of the left and right rollers; one

determines the dynamics of the hydraulic actuator at the right boundary, and the last

one denotes that the left boundary is fixed. The Lyapunov method is employed to

generate control laws. Asymptotic stability of the transverse and longitudinal dynamics

and the velocity tracking error is achieved. The effectiveness of the proposed control

scheme is illustrated via numerical simulations.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

There are numerous industries that use axially moving systems such as papers, textiles, metal sheets, polymers, and
composite materials. Application of these systems yields better performance and supports mass production and high-
speed automation. However, mechanical vibration of the moving material (in both longitudinal and transverse directions),
especially in high-speed precision machine systems, becomes the main quality- and productivity-limiting factor. Such
vibration must be suppressed, and in many industries, the transport velocity of the moving material is required to be
controlled in order to track time-varying velocity as well as constant velocity profiles. Moreover, it is well known that
variations of transport velocity can result in vibrations of the moving material. Therefore, the prompt transverse and
longitudinal vibration suppression together with the transport velocity control is desirable for axially moving material
systems.
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To solve the transverse vibration control problems of axially moving systems [1–7] and of flexible string/beam systems
[8–12], many researchers have investigated the application of control actions at the left or right boundary [13–21]
(a measure known as boundary control), because the provision of control inputs through a supporting roller is more cost-
effective than the addition of an extra actuator at a middle point in the system. These achievements were all predicated on
the Lyapunov method, by which control laws to reduce vibration energy to zero are derived using Lyapunov function
candidates based on the total mechanical energy of the moving system. These control laws incorporate the measured
signal of the transverse displacement along with the time rate of the slope of the moving material at the boundaries, both
obtainable via laser sensors at the boundary points [16]. Therefore, in so far as actuators and sensors can easily be
assembled at the boundaries, the boundary control method can be a practical control solution for axially moving material
systems. Fung et al. [15] developed a boundary control scheme for an axially moving string, in which an adaptive boundary
control law was applied to a mass–damper–spring mechanism to suppress transverse vibration. Li et al. [16] introduced an
adaptive isolation scheme for an axially moving string divided into two spans by a transverse force actuator in order to
reduce the transverse vibration of the controlled span to zero under bounded disturbances in the uncontrolled span.
Nguyen and Hong [21] proposed two schemes of robust adaptive boundary control for an axially moving string of
unknown system parameters under spatially varying tension and unknown boundary disturbance.

In recent years, there have been many papers published on velocity and tension control of axially moving material
systems [21–27]. These studies considered only the longitudinal dynamics of the moving material as represented by either
ordinary differential equations [22–25] or partial differential equations (PDEs: [26,27]). Koc et al. [22] developed an
H-infinity robust control strategy with varying control gains for unwind/rewind sections under the radius variations of
unwind/rewind rollers. Pagilla et al. [23] proposed a decentralized control scheme for a web processing line, based on a
dynamic model taking into account the radial and inertial variations of unwind/rewind rollers. Zhao and Rahn [27] applied
an iterative learning control algorithm to an axially moving string system, enabling precise tension and velocity regulation.

Thus far, little research has been devoted to investigating the vibration control of an axially moving system together
with its transport velocity control. Nagarkatti et al. [3] was the first paper to study coupled vibration and velocity control
for an axially moving string wherein axial velocity was regulated by two control torques driving rollers at the boundaries,
and where transverse vibration was suppressed via an actuator in the middle of the web span. In this investigation,
however, the longitudinal motion of the string was neglected. It should be noted that the torque used to regulate the axial
velocity affects not only the material tension but also the longitudinal motion as well and, consequently, the transverse
motion [28]. Therefore, for coupled vibration suppression and transport velocity control, the control scheme should be
designed to suppress both longitudinal and transverse vibrations. On this premise, we developed an active control scheme
that suppresses both the longitudinal and transverse vibrations of an axially moving string system and regulates its
transport velocity in order to track a desired profile. The scheme incorporates a hydraulic actuator equipped with a damper
at the right boundary and applies separate torques to the left and right rollers, as shown in Fig. 1.

Contributions of this paper are the following. First, a dynamic model including the longitudinal and transverse
dynamics and three actuators dynamics (one hydraulic actuator and two rollers) was derived using the Hamilton’s
principle, where the material tension (spatially varying tension) is considered as a nonlinear function of the string slope
and the change in length of the longitudinal displacement. Second, a control scheme for simultaneous suppression of
longitudinal and transverse vibrations and velocity regulation was designed using the Lyapunov method. The scheme
consists of three control laws that generate the required signals for the force exerted by the hydraulic actuator and the
torques at the left and right rollers. Third, the scheme guarantees the asymptotic convergence of the longitudinal and
transverse vibrations and velocity tracking error to zero.

The rest of this paper is organized as follows. Section 2 presents the dynamic model of the considered system (an axially
moving viscoelastic string system), in which two nonlinear PDEs govern the longitudinal and transverse displacements,
respectively, and the boundary conditions determine the dynamics of the actuators. Section 3 introduces the proposed
control scheme design, wherein the spatially varying tension is considered explicitly. A Lyapunov function-based stability
analysis of the closed-loop system and the proof of asymptotic stability also are discussed. Section 4 includes numerical
simulation results that illustrate the effectiveness of the proposed control scheme. Finally, Section 5 draws conclusions.
Fig. 1. Schematic of an axially moving string system driven by two rollers with a hydraulic actuator at the right boundary.
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2. Problem formulation

Fig. 1 shows a schematic of the axially moving string system driven by two rollers at the boundaries, which are used to
control the longitudinal vibration. For transverse vibration suppression, a control mechanism that includes a hydraulic
actuator and a damper is located at the right boundary. The left boundary is fixed, restricting the movement of the string in
the vertical direction. Conversely, at the right boundary, the control mechanism allows for transverse (vertical) movement
of the string in accordance with the hydraulic actuator dynamics.

The axially moving string travels between the two rollers at a time-varying transport velocity v(t) in the x-direction.
Let l be the distance between the two rollers, A the cross-sectional area, r the mass per unit length, cv the viscous damping
coefficient, and E the Young’s modulus. The longitudinal displacement u(x,t) and the transverse displacement w(x,t)
represent the motions of the string in the fixed inertial frame Oxy. For notational convenience, instead of ux(x,t) and ut(x,t),
ux and ut are used, and similar abbreviations are employed subsequently.

The kinetic energy of the axially moving string is represented as

K ¼
1

2

Z l

0
rfðvþutþvuxÞ

2
þðwtþvwxÞ

2
gdxþ

1

2
mw2

t ðl,tÞþ
J

2R2
u2

t ð0,tÞþu2
t ðl,tÞ

� �
, (1)

where m is the lumped mass of the hydraulic actuator, and J and R denote the moment of inertia and the radius of the two
rollers, respectively (the two rollers are assumed to be exactly the same). The potential energy is obtained as

U ¼
1

2

Z l

0
Tedx (2)

The spatially varying tension T in Eq. (2) is given as [28–30]

T ¼ T0þEAðuxþw2
x=2Þ, (3)

where T0 is the tension of the undisturbed string. The displacement–strain relation e is expressed as

e¼ uxþw2
x=2: (4)

The virtual work done by the non-conservative forces is computed as

dW ¼ ðt1ðtÞ=R�Tb1Þduð0,tÞþðt2ðtÞ=RþTb2Þduðl,tÞþ f ðtÞdwðl,tÞ

�

Z l

0
cvðwtþvwxÞdwdxþcawtðl,tÞdwðl,tÞ, (5)

where the material tensions in the respective adjacent spans (Tb1 and Tb2) are assumed to be constant, t1(t) and t2(t) are
the control torques applied to the two drive rollers, f(t) is the control force exerted by the hydraulic actuator, and ca is the
damping coefficient of the damper (Fig. 1). The virtual momentum transport across the boundaries is given as

dM¼ rvðvUdrÞ
��l
0
, (6)

where the displacement vector r and the velocity vector v are given as

r¼ ðxþuÞiþwj, (7)

v¼ ðvþutþvuxÞiþðwtþvwxÞj, (8)

where i and j are the unit vectors in the x- and y-directions, respectively.
Using the extended Hamilton’s principle [31–34], the governing equations of motion for the axially moving string

system with longitudinal and transverse motions, respectively, are derived as

rðuttþ _vuxþ2vuxtþv2uxxþ _vÞ�ðEAðuxþw2
x=2ÞÞx ¼ 0, (9)

rðwttþ _vwxþ2vwxtþv2wxxÞþcvðwtþvwxÞ�ððT0þEAðuxþw2
x=2ÞÞwxÞx ¼ 0: (10)

The boundary conditions are obtained as

J

R2
uttð0,tÞ�EA uxð0,tÞþ

w2
x ð0,tÞ

2

� �
¼
t1ðtÞ

R
�Tb1þT0, (11)

J

R2
uttðl,tÞþEA uxðl,tÞþ

w2
x ðl,tÞ

2

� �
¼
t2ðtÞ

R
þTb2�T0, (12)

wð0,tÞ ¼ 0, (13)

mwttðl,tÞþ½T0þEAðuxðl,tÞþw2
x ðl,tÞ=2Þ�wxðl,tÞþðca�rvÞwtðl,tÞ�rv2wxðl,tÞ ¼ f ðtÞ: (14)

The initial conditions are given as

uðx,0Þ ¼ g1ðxÞ, utðx,0Þ ¼ g2ðxÞ, wðx,0Þ ¼ h1ðxÞ, wtðx,0Þ ¼ h2ðxÞ: (15)
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The relationship between the torques and the transport velocity is given as

rlRþ
2J

R

� �
_vðtÞ ¼ t1ðtÞþt2ðtÞþðTb2�Tb1ÞR: (16)

Remark 1. As shown in Eqs. (9)–(14), the actuators are coupled with the string system, where Eqs. (11) and (12)
determine the dynamics of the two drive rollers in compliance with the torques t1(t) and t2(t), and Eq. (14) represents the
dynamics of the hydraulic actuator in compliance with the force f(t). Therefore, to achieve the stability of the coupled
system Eqs. (9)–(14), not only the convergence of the longitudinal and transverse displacements to zero needs to be
obtained, but the convergence of the motions of the actuators to zero must also be satisfied.

Remark 2. The torques t1(t) and t2(t) affect not only the transport velocity v(t) but also longitudinal displacement u as well as
the material tension T, as shown in the tension formula (3), the boundary conditions (11) and (12), and the transport velocity
dynamics (16). Consequently, the longitudinal displacement can change the transverse dynamics of the string through the
change of the longitudinal displacement ux, as shown in Eq. (10). Therefore, when vibration suppression and velocity control
are coupled, the control scheme has to be designed in consideration of both the longitudinal and transverse dynamics.

3. Control formulation

The control objective is to suppress the longitudinal and transverse vibrations and to regulate the transport velocity to
track a desired profile. Based on the Lyapunov method, a control scheme employing control force f(t) and control torques
t1(t) and t2(t) is designed to achieve the asymptotic convergence of all the longitudinal and transverse vibrations and the
velocity tracking error to zero.

The velocity tracking error is defined as

eðtÞ ¼ vðtÞ�vdðtÞ, (17)

where vd(t) is the desired velocity. Using Eq. (17), Eq. (16) is then rewritten as

rlRþ
2J

R

� �
_eðtÞ ¼ t1ðtÞþt2ðtÞþðTb2�Tb1ÞR� _vdðtÞ rlRþ

2J

R

� �
: (18)

The desired transport velocity of the string, its time derivative, and the initial velocity tracking error are assumed to be
bounded as follows:

9vdðtÞ9rx1, 9 _vdðtÞ9rx2, eð0Þ9rx3, (19)

where xi (i¼1, 2, 3) is a positive constant.
Based on the total mechanical energy of the string, the following function is introduced:

VðtÞ ¼ a V0ðtÞþ
1

2

Z l

0
EAuxw2

x dx

 !
þbV1ðtÞ, (20)

where a and b are positive constants, V0(t) is defined as

V0ðtÞ ¼
1

2

Z l

0
rðvþutþvuxÞ

2 dxþ
1

2

Z l

0
rðwtþvwxÞ

2 dxþ
1

2

Z l

0
EAu2

x dxþ
1

2

Z l

0
T0w2

x dxþ
1

8

Z l

0
EAw4

x dxþ
EA

4l
u2ðl,tÞ

þ
J

2R2
ðu2

t ð0,tÞþu2
t ðl,tÞÞþ

1

2
m wtðl,tÞþ vþ

2bl

a

� �
wxðl,tÞ

� �2

þw2
x ðl,tÞ

" #
þ

1

2
e2ðtÞ, (21)

and V1(t) is given as

V1ðtÞ ¼ 2r
Z l

0
xfuxðvþutþvuxÞþwxðwtþvwxÞgdx

 !
: (22)

Now, the following control laws are proposed:

f ðtÞ ¼�kf 1ðtÞwtðl,tÞþkf 2ðtÞwxðl,tÞ�rv2wxðl,tÞþðca�rvÞwtðl,tÞ�ðvþ2bl=aÞmwxtðl,tÞ, (23)

t1ðtÞ ¼
EAR

av

avðTb1�T0Þ

EA
þblEAuxðl,tÞw

2
x ðl,tÞ�

bEA

2l
1�

1

2kt1

� �
u2ðl,tÞ�

ðu2
t ð0,tÞþu2

t ðl,tÞÞ

kt1
�aðvþutðl,tÞþvuxðl,tÞÞðuxðl,tÞ

�

þw2
x ðl,tÞ=2Þþaðutð0,tÞþvuxð0,tÞÞðuxð0,tÞþw2

x ð0,tÞ=2Þ�
EAa
2l

uðl,tÞutðl,tÞ�bEAlu2
x ðl,tÞþavuxð0,tÞþamwxðl,tÞwxtðl,tÞ

þbrlðwtðl,tÞþvwxðl,tÞÞ
2
�brlðvþutðl,tÞþvuxðl,tÞÞ

2
þ

Ja
R2

av

EA
�utð0,tÞ

� 	
uttð0,tÞ�utðl,tÞuttðl,tÞ

h i

, (24)

t2ðtÞ ¼ ðrlRþ2J=RÞ _vdðtÞ�kt2eðtÞ�t1ðtÞþðTb1�Tb2ÞR, (25)

where kf1(t) and kf2(t) will be determined later, and kt1 and kt2 are the positive control gains.



Q.C. Nguyen, K.-S. Hong / Journal of Sound and Vibration 331 (2012) 3006–30193010
Remark 3. In implementing the control laws (23)–(25), the transverse displacement w(l,t) can be measured with a
displacement sensor attached to the hydraulic actuator. The slopes of the string, wx(0,t) and wx(l,t), can be obtained by
using two laser sensors at each boundary [16]. The backward differencing of such signals can provide wt(l,t) and wxt(l,t).
By multiplying the roller angle oscillations (measured by means of the encoders on the two rollers) by radius R, the
longitudinal displacements at the boundaries, u(0,t) and u(l,t), can be determined [35]. Subsequently, the signals ut(0,t),
ut(l,t), utt(0,t), and utt(l,t) can be obtained through the backward differencing of u(0,t) and u(l,t). Using the values of the
material tension, T(0,t) and T(l,t), as measured by the tension sensors near the two rollers and the material tension formula
(3), the values of ux(0,t) and ux(l,t) can be estimated. Finally, the transport velocity v(t) can be measured with the
tachometer on the right roller.

Preliminary to the stability analysis of the closed-loop system, four lemmas are established as follows.

Lemma 1. If the initial tension T0 and the two positive constants a and b in (20) satisfy the following inequalities:

T04maxð3r=2,EAð
ffiffiffi
5
p
�2Þ=4Þ, (26)

a42bl=½1�EAð
ffiffiffi
5
p
�2Þ=ð4T0Þ�, (27)

then the following holds:

0rg1W1ðtÞrVðtÞrg2W2ðtÞ, (28)

where

W1ðtÞ ¼

Z l

0
ðutþvuxÞ

2 dxþ

Z l

0
u2

x dxþ

Z l

0
ðwtþvwxÞ

2 dxþ

Z l

0
w2

x dxþ

Z l

0
w4

x dxþu2ðl,tÞ=2l

þu2
t ð0,tÞþu2

t ðl,tÞþw2
x ðl,tÞþ½wtðl,tÞþðvþ2bl=aÞwxðl,tÞ�

2þe2ðtÞ, (29)

W2ðtÞ ¼ V0ðtÞ, (30)

g1 ¼min
ða�2blÞr

2
,
a½1�EAð

ffiffiffi
5
p
�2Þ=ð4T0Þ��2bl

4
,
ð
ffiffiffi
5
p
�2ÞaEA

8
ffiffiffi
5
p ,

a
2

,
aJ

2R2
,
am

2

 !
, (31)

g2 ¼ ð1þ
ffiffiffi
5
p

=2Þaþ2bl: (32)

Proof. Using the inequality ða2þb2
Þ=2Zab, we obtain

a
2

Z l

0
EAuxw2

x dxr
aEA

ffiffiffi
5
p

4

Z l

0
u2

x dxþ
aEA

4
ffiffiffi
5
p

Z l

0
w4

x dx, (33)

2b
Z l

0
rxuxðvþutþvuxÞdxrbrl

Z l

0
u2

x dxþbrl

Z l

0
ðvþutþvuxÞ

2 dx, (34)

2b
Z l

0
rxwxðwtþvwxÞdxrbrl

Z l

0
w2

x dxþbrl

Z l

0
ðwtþvwxÞ

2 dx: (35)

Since 2u2
x rw2

x [28–30], we have

2

Z l

0
u2

x dxr
Z l

0
w2

x dx: (36)

Utilizing Eqs. (33)–(36), we arrive at

VðtÞraV0ðtÞþ
a
ffiffiffi
5
p

4

Z l

0
EAu2

x dxþ
a

4
ffiffiffi
5
p

Z l

0
EAw4

x dxþbl

Z l

0
rðvþutþvuxÞ

2 dxþ
3bl

2

Z l

0
rw2

x dxþbl

Z l

0
rðwtþvwxÞ

2 dx

r ½ð1þ
ffiffiffi
5
p

=2Þaþ2bl�V0ðtÞ: (37)

Similarly, we have

VðtÞZaV0ðtÞ�
a
ffiffiffi
5
p

4

Z l

0
EAu2

x dx�
a

4
ffiffiffi
5
p

Z l

0
EAw4

x dx�
3bl

2

Z l

0
rw2

x dx�bl

Z l

0
rðwtþvwxÞ

2 dx�bl

Z l

0
rðvþutþvuxÞ

2 dx

Z
ða�2blÞr

2

Z l

0
ðvþutþvuxÞ

2 dxþ
a½1�EAð

ffiffiffi
5
p
�2Þ=ð4T0Þ��2bl

2

Z l

0
u2

x dxþ
ða�2blÞr

2

Z l

0
ðwtþvwxÞ

2 dx

þ
a½1�EAð

ffiffiffi
5
p
�2Þ=ð4T0Þ��2bl

4

Z l

0
w2

x dxþ
ð
ffiffiffi
5
p
�2ÞaEA

8
ffiffiffi
5
p

Z l

0
w4

x dxþ
aEA

4l
u2ðl,tÞþ

aJ

2R2
ðu2

t ð0,tÞþu2
t ðl,tÞÞ

þ
am

2
w2

x ðl,tÞþ
am

2
½wtðl,tÞþðvþ2bl=aÞwxðl,tÞ�

2þ
a
2

e2ðtÞZg1W1ðtÞ: (38)

The lemma is proved. &
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Lemma 2. The time derivative of the function V(t) satisfies the inequality

_V ðtÞr�lW1ðtÞ, (39)

where l is a positive constant.

Proof. Differentiating Eq. (20) with respect to time yields

_V ðtÞ ¼ a _V 0ðtÞþaEA

Z l

0
ðwxtþvwxxÞuxwx dxþ

aEA

2

Z l

0
ðuxtþvuxxÞw

2
x dxþ _V 1ðtÞ: (40)

Using Eqs. (9) and (10), _V 0ðtÞ is derived as

_V 0ðtÞ ¼

Z l

0
ðvþutþvuxÞðEAðuxþw2

x=2ÞÞx dxþ

Z l

0
EAðuxtþvuxxÞux dxþ

Z l

0
ðwtþvwxÞððT0þEAðuxþw2

x=2ÞÞwxÞx dx

þ

Z l

0
ðwxtþvwxxÞðT0þEAw2

x=2Þwx dx�cv

Z l

0
ðwtþvwxÞ

2 dxþEAuðl,tÞutðl,tÞ=2lþ J utð0,tÞuttð0,tÞþutðl,tÞuttðl,tÞð Þ=R2

þm½wtðl,tÞþðvþ2bl=aÞwxðl,tÞ�½wttðl,tÞþðvþ2bl=aÞwxtðl,tÞ�þeðtÞ_eðtÞ: (41)

Furthermore, _V 1ðtÞ is obtained as

_V 1rbr½xðutþvuxÞ
2
�l0þbEA½xu2

x �
l
0�br

Z l

0
ðutþvuxÞ

2 dx�bEA

Z l

0
u2

x dxþ2bEA

Z l

0
xuxwxwxx dx�ðbr�bcvl=s1Þ

Z l

0
ðwtþvwxÞ

2 dx

�ðbT0�bcvls1Þ

Z l

0
w2

x dx�bEA

Z l

0
uxw2

x dx�
bEA

2

Z l

0
w4

x dxþbEA

Z l

0
xuxxw2

x dx

þbEA

Z l

0
xwxxw3

x dxþblTðl,tÞw2
x ðl,tÞþbrlðwtðl,tÞþvwxðl,tÞÞ

2: (42)

In deriving Eq. (42), Eqs. (9) and (10) and the following inequality were used:

2

Z l

0
xwxðwtþvwxÞdxr ls1

Z l

0
w2

x dxþ
l

s1

Z l

0
ðwtþvwxÞ

2 dx, (43)

where s140. Substituting Eqs. (41) and (42) into Eq. (40) and using the boundary conditions (11)–(14), Eq. (40) is
rewritten as

_V ðtÞr�br
Z l

0
ðvþutþvuxÞ

2 dx�ðbrþða�blÞcv=s1Þ

Z l

0
ðwtþvwxÞ

2 dx�bEAð1�1=2kt1Þ

Z l

0
u2

x dx�bðT0�cvls1�EA=2s2Þ

Z l

0
w2

x dx

�
bEAð3�2ðs2þkt1ÞÞ

4

Z l

0
w4

x dx�avw2
x ð0,tÞTð0,tÞ�bEAlw4

x ð0,tÞþbEAlw4
x ðl,tÞþblTðl,tÞw2

x ðl,tÞ

þawtðl,tÞwxðl,tÞTðl,tÞþavw2
x ðl,tÞTðl,tÞþ awtðl,tÞþðavþ2blÞwxðl,tÞ

� �
f ðtÞ�ðca�rvÞwtðl,tÞ�Tðx,tÞwxðl,tÞ
�

þrv2wxðl,tÞþðvþ2bl=aÞmwxtðl,tÞ
�
þaðvþutðl,tÞþvuxðl,tÞÞðuxðl,tÞþw2

x ðl,tÞ=2Þþ
avt1ðtÞ

EAR
�
avðTb1�T0Þ

EA
�

avJ

EAR2
uttð0,tÞ

þavw2
x ð0,tÞ=2�autð0,tÞuxð0,tÞ�avu2

x ð0,tÞ�vutð0,tÞw2
x ð0,tÞ=2�avuxð0,tÞw2

x ð0,tÞ=2þEAauðl,tÞutðl,tÞ=2lþbEAlu2
x ðl,tÞ

þbrlðwtðl,tÞþvwxðl,tÞÞ
2
þamwxðl,tÞwxtðl,tÞþbrlðvþutðl,tÞþvuxðl,tÞÞ

2
þ Ja½utð0,tÞuttð0,tÞþutðl,tÞuttðl,tÞ�=R2

þeðtÞ_eðtÞ: (44)

It is noted that the following inequalities were used in deriving Eq. (44)Z l

0
xuxxw2

x dxþ2

Z l

0
xuxwxwxx dxr ½xuxw2

x �
l
0þ

1

2kt1

Z l

0
u2

x dxþ
kt1

2

Z l

0
w4

x dx, (45)

�

Z l

0
uxw2

x dxr
1

2

1

s2

Z l

0
u2

x dxþs2

Z l

0
w4

x dx

 !
, (46)

where s240. Substituting Eqs. (24) and (25) into Eq. (18), we have

_eðtÞ ¼�
kt2R

rlR2
þ2J

eðtÞ: (47)

Substituting Eqs. (23), (24), and (47) into Eq. (44), we obtain

_V ðtÞr�br
Z l

0
ðvþutþvuxÞ

2 dx� brþ ða�blÞcv

s1

� �Z l

0
ðwtþvwxÞ

2 dx�bEA 1�
1

2kt1

� � Z l

0
u2

x dxþ
u2ðl,tÞ

2l

 !

�b T0�cvls1�
EA

2s2

� �Z l

0
w2

x dx�
bEAð3�2ðs2þkt1ÞÞ

4

Z l

0
w4

x dx�avw2
x ð0,tÞTð0,tÞ�bEAlw4

x ð0,tÞ
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�avEAu2
x ð0,tÞ�akf 1w2

t ðl,tÞþ akf 2�kf 1ðavþ2blÞ
� 

wtðl,tÞwxðl,tÞ

� blT0�ðavþ2blÞkf 2

� 
w2

x ðl,tÞ�
1

kt1
ðu2

t ð0,tÞþu2
t ðl,tÞÞ�

kt2R

rlR2
þ2J

e2ðtÞ: (48)

Now, kf1(t), kf2(t), and kt1 are chosen to satisfy the following conditions:

kf 1ðtÞ ¼ ablT0=2ðavþ2blÞ2, (49)

kf 2ðtÞ ¼ �blT0=2ðavþ2blÞ, (50)

3=24kt141=2: (51)

Since the value of T0 is sufficiently large, there exist sufficiently large a, b, and sufficiently small s1 and s2 such that the
conditions (26) and (27) and the following inequalities hold:

Z1 ¼ brþða�blÞcv=s140, (52)

Z2 ¼ 1�1=ð2kt1Þ40, (53)

Z3 ¼ T0�cvls1�EA=ð2s2Þ40, (54)

Z4 ¼ ½3�2ðs2þkt1Þ�=440: (55)

Then, the inequality

_V ðtÞr�lW1ðtÞr0 (56)

is obtained, where

l¼min br,Z1,bEAZ2,bZ3,bEAZ4,blT0,
blT0a2

2ðavþ2blÞ2
,

1

kt1
,

kt2R

rlR2
þ2J

 !
: (57)

The lemma thereby is proved. &

Lemma 3. (Do and Pan [9, p. 785]). Given zðx,tÞ : ½0,l� �Rþ-R , the following inequalities hold:Z l

0
z2ðx,tÞdxr2lz2ð0,tÞþ4l2

Z l

0
z2

x ðx,tÞdx, (58)

Z l

0
z2ðx,tÞdxr2lz2ðl,tÞþ4l2

Z l

0
z2

x ðx,tÞdx, (59)

z2ðx,tÞoz2ð0,tÞþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
z2ðx,tÞdx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
z2

x ðx,tÞdx

s
, (60)

z2ðx,tÞoz2ðl,tÞþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
z2ðx,tÞdx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
z2

x ðx,tÞdx

s
: (61)

Lemma 4. (Fung et al. [13, p. 437]). If zðx,tÞ : ½0,l� �Rþ-R is uniformly bounded, {z(x,t)}xA[0,l] is equi-uniformly continuous

in t, and limt-1

R t
0 :zðtÞ:2

dt exists and is finite, then limt-1:zðtÞ:¼ 0.

Theorem 1. Consider the system (9) and (10) with the boundary conditions (11)–(14). kf1(t), kf2(t), kt1, and kt2 in

Eqs. (23)–(25) are selected to satisfy the conditions (49)–(51). Then, the control laws (23)–(25) guarantee the uniform

asymptotic convergence of the transverse and longitudinal vibrations and the velocity tracking error to zero.

Proof. Consider the Lyapunov function candidate (20). Using Eq. (56), Lemmas 1, and 3, we have

g1W1ðtÞrVðtÞrVð0Þo1, (62)

1

4l2

Z l

0
u2 dxr

u2ðl,tÞ

2l
þ

Z l

0
u2

x dxrW1ðtÞo1, (63)

1

4l2

Z l

0
w2 dxr

Z l

0
w2

x dxrW1ðtÞo1, (64)

Z l

0

_u2 dx¼

Z l

0
ðutþvuxÞ

2 dxrW1ðtÞo1, (65)
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Z l

0

_w2 dx¼

Z l

0
ðwtþvwxÞ

2 dxrW1ðtÞo1, (66)

Z l

0
w4

x dxrW1ðtÞo1, (67)

e2ðtÞrW1ðtÞo1: (68)

Define

:uðx,tÞ:¼
Z l

0
u2ðx,tÞdx

 !1=2

, (69)

:wðx,tÞ:¼
Z l

0
w2ðx,tÞdx

 !1=2

: (70)

Using Lemma 3 and Eqs. (63)–(66), we obtain

u2ru2ðl,tÞþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
u2 dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
u2

x dx

s
o1, (71)

w2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
w2 dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
w2

x dx

s
o1, (72)

:u:2
þ: _u:2

þ:w:2
þ: _w:2r

W1ðtÞ

g3

o1, g3 ¼min
1

4l2
,1

� �
, (73)

_V ðtÞr�lg3f:u:2
þ: _u:2

þ:w:2
þ: _w:2

g: (74)

From Eqs. (71) and (72), it can be concluded that u and w are bounded. Eq. (74) implies thatZ 1
0

:u:2
dtrðVð0Þ�Vð1ÞÞ=ðlg3Þo1, (75)

Z 1
0

:w:2
dtr ðVð0Þ�Vð1ÞÞ=ðlg3Þo1: (76)

Since

d

dt
ð:u:2

Þ ¼

Z l

0
2u _u dxr

Z l

0
ðu2þ _u2

Þdxr:u:2
þ: _u:2o1, (77)

d

dt
ð:w:2

Þ ¼

Z l

0
2w _w dxr

Z l

0
ðw2þ _w2

Þdxr:w:2
þ: _w:2o1, (78)

{u(x,t)}xA[0,l] and {w(x,t)}xA[0,l] are uniformly bounded and equi-uniformly continuous in t. Using Lemma 4, Eqs. (75) and
(76) imply that limt-1:uðx,tÞ:¼ 0 and limt-1:wðx,tÞ:¼ 0, respectively. Using Eq. (56) and Lemma 1, we obtain

_V ðtÞr�lg3e2ðtÞ, (79)

which implies Z 1
0

e2ðtÞdtr
ðVð0Þ�Vð1ÞÞ

lg3

o1: (80)

Using Eqs. (47) and (68), we have that _eðtÞ is uniformly bounded. It follows from Barbalat’s Lemma [36, p. 192] that
limt-19eðtÞ9¼ 0.

Since W1(t) is bounded, the boundedness of the total mechanical energy of the string system is obtained. From an
engineering viewpoint that if the energy of the string system is bounded, then all the signals that constitute the governing
dynamic equations will also be bounded, the following assumptions are made [3,14,16]: (i) If the kinetic energy of the
string system (1) is bounded, then ut, uxt, wt, and wxt are bounded. (ii) If the potential energy of the string system (2) is
bounded, then ux, uxx, wx, and wxx are bounded. Using Eq. (9) and the above statements, we have that utt is bounded. Since
e(t) and _eðtÞ are bounded, Eqs. (17) and (19) imply that v(t) and _vðtÞ are bounded. Finally, it is concluded that the control
laws (23)–(25) are bounded. &
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4. Simulations

The finite difference method was employed to find an approximate solution for the PDEs with the boundary conditions
(9)–(14). The convergence scheme is based on the central (for the string span) and forward/backward (for the left/right
Table 1
System parameters used in numerical simulation.

Parameter Definition Value

A Cross-sectional area 0.4�0.001 m2

E Young’s modulus 1.2�106 N/m2

ca Damping coefficient of the damper 0.25 N m/s

cv Viscous damping coefficient of the string 0.001 N m2 s

J Moment of inertia of the roller 0.2 kg m2

l Distance between two rollers 4 m

m Lumped mass of the hydraulic actuator 10 kg

R Radius of the roller 0.1 m

T0 Initial tension 1000 N

Tb1 Tension in the left adjacent span 2000 N

Tb2 Tension in the right adjacent span 400 N

r Mass per unit length 2.7 kg/m
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Fig. 2. (a) The regulated transport velocity (solid) obtained by Eq. (16) and the desired velocity profile (dotted) and (b) the velocity tracking error.
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boundary) difference methods. The system parameters used in simulations are listed in Table 1. Let the initial conditions of
the string be u(x,0)¼0.1 sin(px/l), ut(x,0)¼0, w(x,0)¼0.5 sin(px/l), and wt(x,0)¼0. In the simulation, the transport velocity
was regulated to track a typical velocity profile (dotted line) widely used in practice, as shown in Fig. 2.

The dynamic responses of the axially moving string were simulated in two cases. In the first case, the longitudinal
vibration suppression was not focused. The control force f(t) was selected as (23), where kf1(t) and kf2(t) were given as (49)
and (50). Since the torques t1(t) and t2(t) were used only to regulate the transport velocity, the control laws

t1ðtÞ ¼ 0, (81)

t2ðtÞ ¼ ðrlRþ2J=RÞ _vdðtÞ�kt2eðtÞþðTb1�Tb2ÞR, (82)

were proposed, where kt1¼0 and kt2¼40. The positive constants a, b, s1, and s2 were chosen according to the inequalities
(52), (54), and (55) as follows: a¼10, b¼0.1, s1¼1, and s2¼0.3. In the second case, the proposed control scheme
(23)–(25) for suppression of the longitudinal and transverse vibrations and regulation of the transport velocity was applied
to the closed-loop system. The control gain kt1¼1.1 was chosen. kf1(t), kf2(t), kt2, a, b, s1, and s2 were maintained as in the
first case.

It should be noted that the velocity tracking error dynamics (47) is also obtained with the control torque laws (81) and
(82). Therefore, the asymptotic convergence of the velocity tracking error to zero can be achieved in both simulation cases,
as shown in Fig. 2. With regards to vibration suppression, good convergence of the longitudinal and transverse vibrations
cannot be achieved with the control laws (23), (81), and (82), as shown in Figs. 3 and 4. In that case, as shown in Fig. 3a, the
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Fig. 3. Longitudinal displacements at x¼ l/2: (a) without longitudinal vibration suppression (the control laws (23), (81), and (82) are used) and (b) with

longitudinal vibration suppression (the control laws (23)–(25) are used).
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longitudinal vibration decreases very slowly; that is, when the transport velocity reaches zero at t¼20, the value of the
longitudinal displacement is not acceptable (i.e., u(0.5l,20)¼0.09, 90 percent of the initial value). As mentioned in Remark
2, the longitudinal displacement affects the transverse displacement through the material tension. Therefore, when the
longitudinal vibration cannot be suppressed, transverse vibration suppression with the control force (23) requires a great
amount time: As shown in Fig. 4a, after 20 s, the value of the transverse displacement is still large (i.e., w(0.5l,20)¼0.05,
10 percent of the initial value). As shown in Figs. 3b and 4b, the use of the proposed control scheme (23)–(25) provides the
asymptotic convergence of both longitudinal and transverse vibrations; in other words, the longitudinal and transverse
vibrations are suppressed completely within 1 s. As shown in Eqs. (9) and (10), the axial acceleration of the string _vðtÞ

affects to both the longitudinal and transverse dynamics. Therefore, when _vðtÞ changes (at the beginning of a transport,
at the transition point between acceleration and constant velocity, i.e., at 5 s in Fig. 2(a), and at the transition point
between constant velocity and deceleration, i.e., at 15 s in Fig. 2(a)), the longitudinal and transverse vibrations occur, as
shown in Figs. 3(b) and 4(b). Fig. 5 shows that the oscillation angle of the left roller (u(0,t)/R), the oscillation angle of the
right roller (u(l,t)/R), and the hydraulic actuator displacement (w(l,t)) converge to zero. In Fig. 6, the control force and the
two control torques are plotted.

5. Conclusions

In this paper, a control scheme for suppression of transverse and longitudinal vibrations and regulation of transport
velocity was developed for an axially moving string system. The control scheme incorporates the control force exerted by
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Fig. 5. Convergence of the motions of the actuators: (a) the oscillation angle of the left roller u(0,t)/R, (b) the oscillation angle of the right roller u(l,t)/R

and (c) the hydraulic actuator displacement w(l,t).
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the hydraulic actuator equipped with a damper at the right boundary and two control torques applied to the two drive
rollers. With regards to the dynamics of the axially moving string, two nonlinear PDEs representing the longitudinal and
transverse motions of the string, respectively, were derived with reference to the spatially varying tension. Based on the
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energy of the axially moving string system, the Lyapunov method was employed to generate control laws. The stability of
the closed-loop system, insofar as the longitudinal and transverse vibrations and velocity tracking error asymptotically
converged to zero, was proved.
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